Digital Investigation 28 (2019) S60—S67

Contents lists available at ScienceDirect =
DFRWS 2019 EUROPE

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

Check for
updates

Deleted file fragment dating by analysis of allocated neighbors

Ahmed A. Bahjat’, Jim Jones

George Mason University, Fairfax, VA, United States

ARTICLE INFO ABSTRACT

Article history: Timestamps play a substantial role during digital forensic investigations and address two main objec-
tives. First, they serve as a primary culling criterion to reduce the amount of digital evidence subject to
analysis. Second, timestamps are the sole feature that allows reliable reconstruction of time-lines and
they assist in locating temporal anomalies. File fragments, typically from previously deleted or relocated
content, are often useful, especially when intact files are unavailable. Such fragments rarely contain
embedded timestamps or have file-system timestamp information, which renders them less useful. In
this work, we investigate and propose a framework for determining a time-window for deleted file
fragments that are typically found in un-allocated space and file slack. We hypothesize that using the
known temporal state of neighboring clusters allows us to derive a date-and-time range for when the file

Keywords:

Digital stratigraphy
Computer forensics
Digital evidence
File slack

Deleted file

Event reconstruction

fragment was first written to media until it was subsequently deleted.
© 2019 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

In order to reconstruct events, digital forensic examiners seek
every piece of evidence available, including full or partial files
which have been deleted or deallocated. File carving — extracting
full or partial files from un-allocated space — has been studied
extensively in the past ten years (Silberschatz et al., 2012). In many
cases, the successful recovery of a file is infeasible (if fragmented) or
impossible (if partially overwritten). However, remnants of these
files — as small as a single identifiable sector — may still allow for a
reconstruction of a time-line and lead to a probable piece of evi-
dence. Buchholz and Spafford (2004), suggest that timestamps are
invaluable meta-data to record and hunt for in order to answer the
essential “when did what happen?” question. In addition, they
allow an ordering of the file operations into a timeline. As a simple
scenario, consider a case where a specific website was claimed to
have been visited. An indication of this visit often appears in
Cookies, history files, and the system registry which are stored in
clear text under default settings. Remnants of these files' contents
may still exist in the un-allocated space of the hard drive — even if
the original file has been deleted. Similarly, remnants of these files
may exist in a file slack (Carrier, 2005), which refers to the unused
remaining sectors of an allocated file's storage area. Depending on
the file system format, a file slack can be as big as 60 Kilo-Bytes or

* Corresponding author.
E-mail addresses: abahjat@gmu.edu (A.A. Bahjat), jjonesu@gmu.edu (J. Jones).

https://doi.org/10.1016/j.diin.2019.01.015

larger. After finding a file fragment, we need to contextually place
the evidence in a timeline to draw a complete picture of the case. In
the scenario above, searching for text — e.g. a URL — solves half of
the story but without a plausible timestamp the story is incom-
plete. With a valid timestamp the question of when the file was
created or deleted can be answered. File systems typically log at
least a few useful dates about each file, including: created date, last
modified date, last accessed date, and the file record changed date.
This information is lost when the file is deleted and its record is
then allocated for another file. As a first step, if the cluster where
the fragment was found is a file slack of an existing file, we can
consider the new file created time or its allocation time to be an
upper-bound of the evidence lifespan under certain conditions.
This means that the URL was surely visited before it was later
overwritten. This is not always a straightforward reading, as we will
see in this work, due to the way these dates are updated. Further-
more, by looking into timestamps of adjacent allocated files, we can
infer a lower-bound date for when the evidence fragment was
originally created. The two bounds defines the time-window of a
given file. The upper-bound date approximates when the file was
last seen before it was deleted. Similarly the lower-bound date
approximates the last allocation date for the file.

Digital stratigraphy is a new sub-field emerging in digital fo-
rensics that studies file system traces and writing patterns to
discover anomalies and behaviors (Casey, 2018). Stratigraphic
dating is a well known method in archaeology that studies
geographical strata and predicts dates for natural artifacts based on

1742-2876/© 2019 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:abahjat@gmu.edu
mailto:jjonesu@gmu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2019.01.015&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2019.01.015
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.diin.2019.01.015
https://doi.org/10.1016/j.diin.2019.01.015

A.A. Bahjat,]. Jones / Digital Investigation 28 (2019) S60—S67 S61

known dates and the principle that upper layers are younger than
the layers underneath. Prior research has addressed related prob-
lems, such as data fragments classification (the file type where
these fragments originally existed). Poisel et al. (Poisel et al., Tjoa)
summarized and grouped this body of work into five approaches to
data fragment classification. Three of them stand out, namely,
statistical-based approaches that infer a class from statistical fea-
tures of the data universe; signature-based approaches that iden-
tify a fragment based on prior knowledge of fragment content; and
machine-learning based approaches that use supervised or unsu-
pervised learning algorithms to classify data fragments into cate-
gories of files. However, the usefulness of classifying data fragments
is limited if the investigator fails to transform these fragments into
a logical and often a temporal scenario to support or refute a
hypothesis.

Our initial investigation as well as studies by Casey (2018) show
that a file allocation scheme translates into a disk writing pattern
for each file system. Understanding these patterns through tem-
poral logic allows us to place fragments into a probable timeframe.
To further narrow down this timeframe window, we are working to
model the file system's writing pattern that allows for the predic-
tion of a discrete timestamp for each cluster in the file system.

Related works

Our work complements the work in file fragment identification.
For example, identifying uninstalled applications is a very useful
tool in the investigation arsenal. Jones and Khan defined a practical
method to discover evidence of deleted applications by performing
a sector-by-sector matching of hard drive under investigation to a
pre-constructed sectors’ catalog of applications (Jones and Khan,
2017). Our work helps to identify when applications were unin-
stalled. Other relevant work on this problem can be divided into
three broad categories: the role of time in digital forensics, event
reconstruction and analysis, and work in file fragment identifica-
tion and recovery.

In the role of time, James Allen can be considered one of the first
scholars who wrote about time in computing (Allen, 1983). In his
work, Allen emphasized the temporal information logic in various
computing problems and paved the road for the event recon-
struction work. Allen published a time representation technique as
well as a reasoning system about temporal intervals (Allen, 1991).
In a more specific research to digital forensics, Boyd and Foster
outlined a case study that shows how misinterpretation of time-
stamps can lead to a wrong accusation (Boyd and Forster, 2004).
Great care has to be taken in at least three categories of concerns;
the contextual meaning of timestamps, time zone interpretation
and conversion, and clock synchronization (Buchholz and Tjaden,
2007; Lamport, 1978). Furthermore, Chow et al. (2007) studied
and reported a list of observations about system times in the NTFS
file system. Their work is very useful for any investigator dealing
with time to understand the relationship between system dates
and user actions. One should take caution when dealing with the
observations in (Chow et al., 2007) as not all of them were true at
least from our experimentation as we will show in this paper.

The work in event reconstruction started more than forty years
ago. Event reconstruction is a particularly challenging task due to
the lack of reliable tamper-proof source of time in addition to the
challenges of automating the reconstruction process. Leslie Lamp-
ort, studied events ordering in distributed systems (Lamport, 1978).
Her research is a cornerstone in event reconstruction; it defines the
“Happens before” relationship between two events based on
message correspondence between two processes. Furthermore,
Jeyaraman and Atallah (2006) empirically studied the effectiveness
of automating event reconstruction and they found that most

systems proposed in the literature have a very large false positive
rate. Similarly, In (Hargreaves and Patterson, 2012) Hargreaves and
Petterson propose a less verbose and aggregated timeline con-
struction approach from a the large set of low-level events gener-
ated on a typical hard drive use such as file created, modified, or
deleted while still maintaining a trusted chain to the originating
event. The aggregated events are high-level events such as Skype
call, Google Search, or USB Connected. Low-level events are
extracted mostly from the file system i-node store i.e. $MFT record
in NTES file system. Other dates are extracted from the System
Registry hives. Events sources can be heterogeneous and expands
beyond events logged the system events or transaction journals.
Aggregating these events can leads to knew knowledge about high
level events (Chabot et al., 2014), but may still be missing important
evidence when there is no trace to the low-level events — i.e. when
traces to fragments are lost due to the rolling write on system logs.
Schatz et al. (2006) proposed a method that correlates system
timestamps with other corroborating sources of time connected to
the computer in question — i.e. Proxy server — to infer the tem-
poral behavior of a particular computer. This approach assumes
there is a connected computer and cannot be applied to an isolated
system. However, a finite-state machine approach can be used for
isolated system (Gladyshev and Patel, 2004). Visualizing and
analyzing automated timelines can be daunting task most of the
times, for this Inglot and Liu built an enhanced analysis tool and
framework to filter, group, and visualize timelines (Inglot et al.,
2012; Inglot and Liu, 2014).

Since our focus addresses fragments in file slacks, file fragment
classification work is also of interest. If a fragmented file can be
recovered, then dating will be straightforward if the file has inter-
nal dates — e.g. a MS Office file or a PDF. Several other research has
been done on fragment classification (Poisel et al., Tjoa) including
classification using machine learning (Beebe et al., 2013), carving
fragmented files (Garfinkel, 2007), and statistical analysis of frag-
ment types (Roussev and Garfinkel, 2009; Veenman).

Background

The primary goal of this publication is to propose a framework
for file fragment dating. We define file fragment dating as a process
of determining an age for a given file remnant. In archaeology
science, there exists two types of dating. Absolute dating is a col-
lective term for techniques that assign specific dates or date ranges
in calendar years to artifacts and other archaeological finds. The
second type is relative dating which is a technique of assigning an
order of events or artifacts relative to other events or artifacts.

File systems

File systems can be seen as levels of abstraction implemented by
the operating system. These abstractions mask the complexity of
hard drive system calls to open, create, append, or delete files as
well as managing the file space efficiently and effectively. For a file
system to do its job effectively, it has to keep track of files and their
relationship to the hard drive and to each other. In addition, it keeps
track of changes that happen to each file in order to provide a
reasonable recovery from errors.

An NTES file system maintains track of all file locations in a
system file named $MFT. This file stores a file record of each file
created in the hard drive that includes information about its allo-
cated clusters, the parent directory, permissions to the file, attri-
butes, and system dates. Each file record has a set of four date types
stored in two attributes to make a total of eight dates: four dates in
the $STANDARD_INFO attribute of the file and four in the $FIL-
E_NAME attribute. The four date types are the Date Modified (M),

S62 A.A. Bahjat,]. Jones / Digital Investigation 28 (2019) S60—S67

Date Accessed (A), Date Created (C), and Date MFT Entry Changed
(E) — collectively referred to as MACE. We refer the four set of dates
as MACE for brevity. In general, the set of four dates in the $FIL-
E_NAME attribute are often overlooked since they are rarely
modified are most likely found out of sync with the dates in the
$STANDARD_INFO. However for dating purposes they are more a
appealing, and in fact reliable, source for dating especially when the
Created (C) date is under suspicion. The dates in the $FILE_NAME
are less frequently touched and, therefore, they are more reliable in
providing a true creation time for a file. Another and more impor-
tant aspect of dates in the $FILE_NAME attribute is that they are
only modifiable by the system kernel. There is no known anti-
forensics utility that can modify these dates. This is not the case
for dates in $STANDARD_INFO, as there are tools i.e. Timestomp
that can modify them (Cho, 2013; Casey, 2011).

In addition to the $MFT table, NTFS file system maintain a record
of each changed file in a file named $USNJrnl and a more detailed
transaction oriented log in $LogFile. It is worth noting that system
date updates are counter-intuitive in many cases. The NTFS file
system for example, can modify the file without updating the file
access date. Furthermore, the file access date does not always
reflect user access; an anti-virus scan updates the access date when
it scans it. Moreover, the defragmentation process does update the
access date when it moves a file from one cluster to another ac-
cording the caching and last access updated policy. Furthermore,
many file systems maintain a tunnel cache that is used to store file
records to be used if a deletion and a subsequent creation occurs
within a short period of time defined by the operating system
configuration (Casey, 2018). If file tunneling is enabled, the file re-
cord in the $MFT is reused for the new file without changing any of
the dates except the C date. In Table 1 we report our own investi-
gation results in what user operations affect the file system dates in
the SMFT.

Digital fragments

A digital fragment is a remnant of a deleted file that resides in
one or more contiguous sectors of a hard drive. It is worth noting
that a file may leave multiple remnants if the file was fragmented or
occupied more than one cluster. Each contiguous remnant is
considered an independent fragment for our dating purposes.
Finding digital fragments is a common practice in digital forensics
and can be achieved in several ways. The most common way is
through text searching as most forensics tools allows searching the
entire hard drive for specific word, byte, or string. The second way
of finding fragments is through utilizing sector hashing. An
example of fragment hash approach is implemented by Jones and
Khan to find evidence of uninstalled applications (Jones and Khan,
2017).

Slack space

Slack spaces exists in various forms. The two most common

forms are the volume/partition slack and file slack. Volume slack is
the un-allocated space left after creating a hard drive partition. File
slack occurs in files that do not fully align with a multiple of a
cluster size. The default cluster size for NTFS file system is 4 Kilo-
Bytes (KB) for up to 16 Tera-Bytes hard drive. The size of the cluster
needs to be larger for lager hard drives (e.g for 130 TB drive, the
default cluster size is 128 KB). As an example, if a file system with a
4 KB cluster size needs to allocate a space for 50 KB file, then 13
clusters — total size 52 KB — will be allocated leaving 2 KB of
unused space. Out of the available space, 100 sectors will be
occupied by the file and 4 sectors of size 512 bytes are left as file
slack. Some operating systems use padding to zero out file slacks.
Windows uses padding only for the last sector used for a file.
Furthermore, modern hard drives are moving to a 4 KB sector size -
a.k.a Advanced Format-in order to reach higher capacities.

Dating model

Operating systems deal with hard drives at a file system level.
File allocation algorithms are of special interest to our research
since they determine where files are placed relative to the available
sectors in a hard drive. There are three major allocation methods
described in the literature: contiguous allocation where no frag-
mentation is allowed, linked allocation in which space can be
scattered and pointers are maintained to allocated blocks, and
indexed allocation in which pointers to allocated blocks are main-
tained in a central repository. Fig. 1 shows a snapshot of the allo-
cation after running an automated creation of text files on a heavily
used FAT32 drive. The data show how the file system allocated the
clusters on the end of the hard drive sectors [1,026,422—1,049,990]
before it allocated the next available sectors — 408,326 — seeking
from the beginning of the drive (see Fig. 2).

File system allocations are ignorant of the actual physical allo-
cation managed by the hard drive firmware. Physical allocation is
often times a proprietary algorithm owned by hard drive manu-
facturers. Furthermore, the physical allocation might change after
the file has been allocated at any time for performance reasons
depending on the type of media (e.g. mechanical disk or flash-
based storage), but this detail is still hidden from the file system.
From our experimentation, both NTFS and FAT32 file systems uses
first available cluster algorithm on a brand new hard drive. How-
ever, after the file system is almost full, the NTFS system starts to
allocate files differently than the FAT file system. This is because the
allocation algorithms in NTFS system is a best fit allocation which
behaves differently than the next available allocation that the FAT
file system uses. This means there is a strong positive correlation
between the cluster number and the file allocation time. This cor-
relation goes astray after heavy use of the hard drive and after
system defragmentation operations. In the case of hard drive de-
fragmentation, the mapping between the file record number in the
index table and the cluster number changes. This is because the
primary system call used during a defragmentation process is the
Move operation (FSCTL_MOVE_FILE).

Table 1
System dates.
Location Date Operations
$STD_INFO M modify, create
A Volume move, copy, open, create, defragmentation, anti-virus scan
C copy, create
E rename, volume or local move, copy, modify, create
$FILE_NAME M Volume move, modify, create,
A Volume move, copy, open, create
C copy, create
E Volume move, rename, volume or local move, copy, modify, create

A.A. Bahjat, J. Jones / Digital Investigation 28 (2019) S60—S67

Drive E:

\Test

MName Sizew Created « Modified Attr. st sector
L1

Dﬁle_1 61 1.9 MB 03/21/2017 17:4%:41.9 03/21/2017 17:49:48 A 1,026,422
Dfilej 62 1.7 MB 03/21/2017 17:49:46.0 03/21/2017 17:49:50 A 1,030,278
Dfile_‘l 63 1.6 MB 03/21/2017 17:49:49.5 03/21/2017 17:49:54 A 1,033,678
Dfile_164 1.2 MB 03/21/2017 17:49:53.1 03/21/2017 17:49:56 A 1,036,870
Dfile_1 65 576 KB 03/21/2017 17:49:55.6 03/21/2017 17:49:58 A 1,039,246
Dfile_1 66 55.8 KB 03/21/2017 17:49:57.0 03/21/2017 17:49:58 A 1,040,406
Dfile_1 &7 572 KB 03/21/2017 17:49:57.2 03/21/2017 17:50:00 A 1,040,518
Dfile_‘lBS 1.7 MB 03/21/2017 17:49:58.2 03/21/2017 17:50:04 A 1,041,670
Dfile_169 548 KB 03/21/2017 17:50:02.0 03/21/2017 17:50:04 A 1,045,062
Dfile_WD 1.9 MB 03/21/2017 17:50:03.1 03/21/2017 17:50:08 A 1,046,158
Dflle 7 0.8 KB 03/21/2017 17:50:07.5 03/21/2017 17:50:08 A 1,048, 98?_

Wsile_172 1.8 MB|03/21/2017 17:50:07.7 03/21/2017 17:50:12 | A | 1,049,990

=

[file_173 1.2 MB 03/21/2017 17:50:12.2 03/21/2017 17:50:16 A 408,326
Dfile_174 1.3 MB 03/21/2017 17:5(0:15.5 03/21/2017 17:50:20 A 410,862
Dfile_‘ITS 1.8 MB 03/21/2017 17:50:18.7 03/21/2017 17:50:24 A 413,590
Dfile_176 1.9 MB 03/21/2017 17:50:23.4 03/21/2017 17:50:30 A 430,630
Dfile_177 1.0 MB 03/21/2017 17:50:28.6 03/21/2017 17:50:32 A 434,422
Dfile_178 709 KB 03/21/2017 17:50:30.5 03/21/2017 17:50:34 A 436,470
[_file_179 1.5 MB 03/21/2017 17:50:32.5 03/21/2017 17:50:38 A 437,894
Dfile_'l80 444 KB 03/21/2017 17:50:36.1 03/21/2017 17:50:38 A 441,062
Dfile_181 1.9 MB 03,/21/2017 17:50:37.2 03/21/2017 17:50:42 A 441,950
Dfile_182 1.0 MB 03/21/2017 17:50:41.7 03/21/2017 17:50:44 A 445,838
Dfile_183 1.4 MB 03/21/2017 17:50:43.9 03/21/2017 17:50:50 A 447,894
Fig. 1. Next available allocation.
vore e Junve £)
‘\Program Files\AVG\AVGY 8 min. ago
Name = Ext. Size4 Created Modified Record changed Attr. 1st sector
.
.
[setup.dat dat 2.2 MB 11/09/2009 11:32:49.5 11/09/2009 11:32:49.7 11/09/2009 19:38:40.0 A 1,930,432
[avgfwsd.exe 2.2 MB 11/09/2009 11:31:57.6 11/09/2009 11:31:57.8 11/11/2009 15:00:22.8 1A 14?05464
DEII--
Davgwadv dII dll 23 MB 11/09/2009 ‘I‘I : 11/09/2009 11:3 04.1 11/09/2009 19: A 14 906088
Drive s DriveZ: | B
\Program Files\AVG\AVGS 9 min. ago
Name = Ext. Size4 Created Modified Record changed Attr. 1st sector
..
1.
|_J avgtray.exe exe 1.5 MB 11/08/2009 10:36:17.2 11/08/2009 10:36:17.2 11/08/2009 10:37:53.0 1A 10,695,952
| setup.dat dat 2.2 MB 11/08/2008 20:30:07.7 02/24/2005 22:35:05.0 11/11/2009 15:04:46.8 A 10,092,584
Wlovgrestal _____________[dl___| 22MB8|11/08/2009 10:36:126 ___]11/08/2009 10:36:126 _[11/08/2009 10:37:53.0 | A | 10733616}
|_J avguiadv.dil dil 2.3 MB 11/08/2009 10:38:04.0 11/08/2009 10:38:04.0 11/08/2009 10:38:04.0 A 1,719,168
svemrivac Al Al 23 R4R 11/0277000 102E1NT 11/02/2000 103AINT 11/02/I0NG 1037520 A 1718300

Fig. 2. File re-allocation example after a software update operation.

S63

When a file in NTFS file system is deleted, its file record in the
$MFT table is marked deleted and the corresponding clusters are
marked available in the system $Bitmap. The deletion event is
recorded in the transaction journals but none of the dates change in
the $MFT drive (see Fig. 5). Therefore, at this point, no dating is
required and the file can be fully restored. There is no guarantee on
how long the deleted file can stay intact. Two types of overwriting
can happen: first, the file record in the $MFT is allocated to a
different file in which the pointer to the deleted file is lost; second,
the available clusters are later allocated for a different file which
results in partial or complete overwriting of the file content.
However, in the first type, the data is still recoverable by creating a
new pointer to the data. The new pointer will allow a recovery of

the file content but will create new system dates as a new file re-
cord has to be created. Our dating scheme can help in recovering a
date for this type of scenario in addition to the fragment dating. It is
worth noting, that some files, i.e PDF, Office Files, or email types,
have internal dates that in many cases are sufficient for dating and a
recovery of the system dates may not add much value. In the sec-
ond type of overwriting, the system dates are recoverable from the
file record although the data might be lost partially or completely.
Note that, the first and the second types can both happen in the
worst case scenario where the data and its pointer are both lost,
which is not unusual. Our recovery scheme is also very handy in
these situations.

Contrary to Observation 2 in (Chow et al., 2007), we found that

S64 A.A. Bahjat,]. Jones / Digital Investigation 28 (2019) S60—S67

moving a file from one partition to another — even within the same
physical drive — will not change the creation time in $Std_Info but
will change all dates in $FILE_NAME to the new creation time. We
tried this with a move command and with cut and paste through
the file browser in both a Windows 7 and a Windows 10 systems.

Fig. 3 shows how defragmentation changes the allocated sector
as well as the Last Date Accessed. It is important to note that the
Date accessed is not updated right away, and can take up to 24 h to
be written to the file record. Windows caches the accessed date for
performance reasons; and this feature can be disabled and the date
accessed is then left without being updated.

Fig. 4 shows how a file can be modified and have a modified date
updated but the accessed date is not.

For the dates anomalies described above, it is important that we
look on all the dates on a file to determine last activity. Further-
more, to start dating a file fragment in a given system, we should
start by determining the logical dating boundaries. A logical upper-
bound for our ranges is the collection date. Although this is intuitive
but it is an important step to consider and use for verification.
Similarly, the logical lower-bound for all files must be the first re-
cord creation date. In NTFS system the first record is the $MFT file
itself. This lower-bound can further be verified by looking into the
operating system files create dates. This lower-bound is the latest
date the drive was formatted. A drive could have been formatted
multiple times; to reach a more robust lower-bound in case of
multiple formatting can be extended to the drive manufacturing
date.

Although $FILE_NAME dates are rarely updated which makes
them less useful than the dates on $STANDARD_INFORMATION
dates but we can use this to our advantage. Fig. 5 shows three
snapshots: the first is taken before the file is deleted; the second is
after the file is deleted and, therefore, moved to Recycled bin; and
the third is after the Recycled bin is emptied. The only date that
indicates the deletion is the E date as shown in the figure only if the
file is moved to the recycled bin and does not get changed with a
hard deleted or when the file is no longer in the recycle bin.

Experiment design

We hypothesize that adjacent files have correlated system dates.
In the following details, we propose a set of conjunctures with
evidence based on our empirical study. In order to test our hy-
pothesis, we applied the dating logic on a subset of the M57 Patent
digital corpora built by the Naval Postgraduate School (Garfinkel
et al,, 2009). The M57 data set includes hard drives snapshots
over a 17-day period between Nov, 11 2009 and Dec 11, 2009

MName

File Class

File Size

Physical Size

Date Accessed 11/9/2009 4:31:2¢
Date Created a/2 31:2
Date Modified 2009 12:58:02
Encrypted

Compressed

Actual File

Start Sector

Mame ndex.dat ndex.dat
File Class egular File Regular File
File Size 311,296 376,832
Physical Size 311,296 376,832

Date Accessed 11/12/2009 8:14:05 F 2/2009 8:14:05
Date Created 11/12/2009 8:14:05 F 11/12/2009 8:14:05 P
Date Modified 11/18/2009 5:58:02 P 1/20/2009 11:25:01 F

Fig. 4. Modified file but accessed not updated.

collected from a fictitious patent research institute (the actual
duration is 33 days according to the dates found in the dataset
[Table 4]). We chose this data set because we can extract the ground
truth of when files were deleted, by looking into missing files in the
following snapshot to any given one. For our experiment, we only
used the institute CEO's drives (Pat's drives). Starting from the
second snapshot taken on Nov 16, 2009, we parsed several system
properties, including the set of eight dates of each deleted or
relocated file. The full list of data collected is listed in Table 2. In this
step we check each file in the current snapshot for its existence in
the same location in the prior snapshot. If the file does not exist we
add it to our evidence list as a fragment artifact and then parse its
meta-data. Lastly, we collect the meta-data of all files in the last
snapshot, we declare the last snapshot as the forensic snapshot. The
forensic snapshot is what will be available in a typical investigation,
also known as the duplication drive. Table 3 list the properties of
the forensic snapshot. There was 34813 files in the hard drive, 1483
of the files were non-resident deleted files and their sector were
allocated for other files. Other properties are not used but give a
context on the distribution of the files based on their allocation
type.

Our experiment has two phases, the data collection phase and
the analysis phase. For our data collection, we developed a C#
application with native code using a wrapper of DLLImport < Ker-
nel32.dll > to be able to read the $MFT file as well as reading file
data from a specific sector. Next, we store the results in two SQL
server tables, the first table holds the meta-data of the evidence list
and the second table holds the forensic snapshot meta-data. Using
the two tables, we built an application to read and populate lower
and upper dates for each evidence file. Before we can start pre-
dicting dates let us denote a TrueDate as a date approximating the
actual create date for a file. This date is the file create date (C) taken
from the $FILE_NAME property only if this date is greater than the
$MFT (E) date. Otherwise, the TrueDate is the M date from the

Mame

File Class Reqular File

File Size

Physical Size 558, 8

Date Accessed 3 = -
Date Created 11/9/200¢% 2C
Date Modified 3/2009 4:31:2¢
Encrypted False

Compressed ale

Actual File Tl

Start Sector

Fig. 3. File De-fragmentation.

A.A. Bahjat,]. Jones / Digital Investigation 28 (2019) S60—S67 S65

i onara — <foie termovewrgoeon)
2 (22 4l
a A= N =] .
Neme Neme Name
File Class File Class File Class
File Size File Size File Size
Start Cluster Start Cluster Start Cluster
Date Accessed Date Acceseed Date Accessed
Date Created Date Created Date Created
Date Modified Date Modified Date Modified
Encrypted Encrypted Encrypted
Compressed Compressed Compressed
Actual File Actual File Actual File
Start Sector Start Sector Start Sector
B DOS Attributes E DOS Attributes B DOS Attributes
Hidden Hidden Hidden
System System System
Read only Read only Read only
Archive Archive Archive
B NTFS Information B NTFS Information B NTES Information
MFT Record Number MFT Record Number MFT Record Number
Date Changed (MFT) ¢ Date Changed (MFT) ¢ Date Changed (MFT) ¢
Resident Resident Resident
Offline Offline Offline
Sparse Sparse Sparse
Temporary Temporary Temporary
Owner SID Owner SID Owner SID
Group SID Group SID Group SID

Filename Date Created (MFT)
Filename Date Modified (MFT)
Filename Date Accessed (MFT)
Filename Date Changed (MFT)
Filename File Size (MFT)
Filename Physical Size (MFT)
INDX Entry Filename

INDX Entry File Size

INDX Entry Physical Size

INDX Entry Date Created

INDX Entry Date Modified
INDX Entry Date Accessed
INDX Entry Date Changed v

Filename Date Created (MFT)
Filename Date Modified (MFT)
Filename Date Accessed (MFT)
Filename Date Changed (MFT)
Filename File Size (MFT)
Filename Physical Size (MFT)
INDX Entry Filename

INDX Entry File Size

INDX Entry Physical Size

INDX Entry Date Created

INDX Entry Date Modified
INDX Entry Date Accessed
INDX Entry Date Changed
Physical Size B NTFS Access Control Entry (1)
The physical size of the file in bytes. aaa

Filename Date Created (MFT)
Filename Date Modified (MFT)
Filename Date Accessed (MFT)
Filename Date Changed (MFT)
Filename File Size (MFT)
Filename Physical Size (MFT)
NTFS Access Control Entry (1)
ACE Type

SID

Name

Access Mask

o

Execute File
Read Data
Write Data

Fig. 5. File after it has been deleted and the Recycle Bin emptied.

Table 2
Dataset attributes.

Artifact Attributes

Deleted File
Slack-Owner File
Previous File
Post File

Name,Size, SectorNumber, Fragments Count, MFT Index, MFT SeqNumber, Std_MACE, FileName_MACE
Name,Size, MFT Index, MFT Sequence Number, Std_MACE, FileName_MACE
Name,Size, MFT Index, MFT Sequence Number, Std_MACE, FileName_MACE
Name,Size, MFT Index, MFT Sequence Number, Std_MACE, FileName_MACE

Table 3
Deleted files data set.
Property File Count
All Files 34813
Resident files 5369
Non-resident files 29444
Fragmented files 7019
Total deleted or relocated files 4961
Total resident 1287
Total non-resident 3674
Total non-resident allocated 1483
Total non-resident non-allocated 1424
Total non-resident error-ed 767

$FILE_NAME property. As explained in the previous section this is
done to account for files brought in from an external source or
another partition.

The upper-bound date for a file fragment found in a file slack is
the maximum of the eight dates found in the Slack-Owner (the file
allocated to that space). We take the file occupying the first sector
of the evidence file to be the Slack-Owner file and, therefore, its
maximum date is the upper date.

The lower-bound date is taken from the K-nearest neighbors by
sector similarity; after experimenting with several number of K for
neighbors, we found that 10 neighbours are sufficient to calculate

the average and the average does not drop significantly by adding
more nodes. This can change and has to be evaluated on a larger set.
Specifically, we take the sector number of each record in the evi-
dence table and query the forensic drive table to find the neighbors.
We ignore neighbors with TrueCreate > the upper-bound date. We
then calculate the average TrueCreate date as the predicted lower-
bound date for the evidence file.

Results and discussion

Table 4 shows the range of dates found in the last snapshot in
the following format: ‘MM/DD/YY HH:MM'. One can see from the
dates shown in the table that the last accessed date can sometimes
be corrupt. In our data set, we found 8 files, 3 of which are resident
files, from the Java Run-time Environment (JRE) that have a last
accessed date of ‘11/10/2073’. We re-installed the same installer
found on that hard drive but the last accessed date were the date of
the installation; which indicate a date forged or corrupted.

Slack-Owners and fragments found within its slack have an
interesting relationship. Intuition may lead one to think that a
Slack-Owner's last accessed date is always greater than the frag-
ment's last accessed date. This assumption turns out to not always
be the case in NTFS systems for the following reasons: file
tunneling, downloading a file over the web without accessing the

A.A. Bahjat,]. Jones / Digital Investigation 28 (2019) S60—S67

S66
Table 4
System dates.
Location Date Minimum Maximum
$STD_INFO M 2/8/99 14:08 12/11/09 17:11
A 7/29/08 0:53 10/11/73 12:21
C 2/8/99 14:08 12/11/09 17:11
E 11/8/09 15:36 12/11/09 17:11
$FILE_NAME M 4/14/08 12:00 12/11/09 17:11
A 8/25/09 9:17 10/11/73 12:21
C 1/22/06 0:01 12/11/09 17:11
E 8/11/99 9:00 0:14 12/11/09 17:11

file subsequently, defragmenting the file system where the system
is set to disable last accessed updates, or acquiring — performing
the forensics collection — the hard drive before the operating sys-
tem updates the file records (as this can take up to 24 h).

In Fig. 6 we show the accuracy of the upper-bound prediction
under various confidence levels in days. The accuracy reaches
above 90% when the threshold is set to five days or more — most of
the data were in the +5 days from the actual deletion date. Simi-
larly, Fig. 7 shows the lower-bound accuracy given a confidence
level in days. The lower-bound prediction is more difficult due to
the lack of a robust date that we can pivot on. The lower-bound date
is calculated as the average create date of the neighbouring files
preceding the Slack-Owner in sector allocation as explained in the
previous section. These accuracy graphs show how a flexible con-
fidence level would result in a more accurate prediction until we
have a full coverage of all deleted files with a range close to the
logical boundaries.

We know from our experimentation which is supported by
Chow's findings (observation 1,3 and 7) in (Chow et al., 2007), that
if the file create date equals the modified date then the file is intact
and has not been updated. These observations do not suggest the
contextual meaning of the time. In fact, the creation time and
modified time do not always refer to the actual creation date on the
file system. Extracted files will always keep their original create and
modified date. In our data-set for example, Python26 was down-
loaded to Pat's drive and it appears in the snapshot taken on 11/16/
2009. The create/modified dates for the original compressed
installer at Download folder was dated 11/13/2009 at 2:37AM,
which was then expanded after installation to the root folder of the
Python26. By investigating the Python26 dates we can see the
folder was created during 1 min after the file was downloaded, but
the dates on the decompressed files reflect a 11/26/2009 date.

Our analysis shows an accuracy of at least 94.26% in bounding
the non-resident allocated files. The average lower-bound is (—12),

L
[]
®
[]
[]

L]

0.7 /

Accuracy
)
2

. L L n L
0 5 10 15 20 25 30 35
Days

Fig. 6. Upper-bound Accuracy with various threshold.

09} o i

Accuracy
© © © o o o
w s wm (=] ~ ©
T T T T T
.\
\
L
.

o
[N}
T

01t/

20 25 30 35
Days

Fig. 7. Lower-bound Accuracy with various threshold.

that is 12 days before the last evidence of existence or its deletion.
The average upper-bound is 3 days after the last evidence of exis-
tence. Our analysis was performed on a system where the last ac-
cess date update is enabled. This is the default on Windows but it
can be changed using the registry file or FSUTIL command (“fsutil
behavior set disablelastaccess 1”). The forensic examiner can check
the registry hive on the hard drive under investigation looking for
the value O for the key “HKLM/SYSTEM/CurrentControlSet/Control/
FileSystem/NtfsDisableLastAccessUpdate”.

Conclusion

This research is a foundation for building a dating framework for
file fragments. Dating file fragments is an important step for event
reconstruction when deleted files are found to be part of the evi-
dence corpus. In this work, we showed how dates of neighboring
files can be used to infer a minimum boundary for when a deleted
file — found by its fragment(s) — was created. Similarly, we
showed how the maximum date from the currently allocated file —
Slack-Owner — can be used to define the upper-bound period for
when the file was deleted. Together these two boundaries create a
time window for a deleted file for which a fragment was found in a
file slack. Our dating method accuracy is affected by heavy usage of
the hard drive, the frequency of hard drive defragmentation, and
the file system type being used.

Our future work will include applying the relative dating
scheme on FAT32 systems and comparing the results to the NTFS
findings. Other work we are currently investigating is the applica-
bility of our bounding scheme on fragments found on the un-
allocated space or the volume slack of a partition. Furthermore,
we intend to expand our analysis to a more realistic data set where
the hard drive is used for a longer period of time than the activity
period found in the M57 data set.

References

Allen, J.F,, 1983. Maintaining knowledge about temporal intervals. Commun. ACM
26, 832—843.

Allen, J.F,, 1991. Time and time again: the many ways to represent time. Int. J. Intell.
Syst. 6, 341-355.

Beebe, N.L,, Maddox, L.A., Liu, L., Sun, M., 2013. Sceadan: using concatenated n-gram
vectors for improved file and data type classification. IEEE Trans. Inf. Forensics
Secur. 8, 1519—1530.

Boyd, C., Forster, P., 2004. Time and date issues in forensic computinga case study.
Digit. Invest. 1, 18—23.

Buchholz, F, Spafford, E., 2004. On the role of file system metadata in digital fo-
rensics. Digit. Invest. 1, 298—309.

Buchholz, F, Tjaden, B., 2007. A brief study of time. Digit. Invest. 4, 31—42.

http://refhub.elsevier.com/S1742-2876(19)30025-8/sref1
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref1
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref1
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref2
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref2
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref2
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref3
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref3
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref3
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref3
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref4
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref4
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref4
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref5
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref5
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref5
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref6
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref6

A.A. Bahjat, J. Jones / Digital Investigation 28 (2019) S60—S67 S67

Carrier, B., 2005. File System Forensic Analysis. Addison-Wesley Professional. Part 3
File System Analysis.

Casey, E., 2011. Digital Evidence and Computer Crime: Forensic Science, Computers,
and the Internet. Elsevier Science. CH-17.

Casey, E., 2018. Digital stratigraphy: contextual analysis of file system traces in
forensic science. J. Forensic Sci. 63, 1383—1391.

Chabot, Y., Bertaux, A., Nicolle, C., Kechadi, T., 2014. Automatic timeline construction
and analysis for computer forensics purposes. In: IEEE Joint Intelligence and
Security Informatics Conference, pp. 276—279.

Cho, G.-S., 2013. A computer forensic method for detecting timestamp forgery in
ntfs. Comput. Secur. 34, 36—46.

Chow, K.-P,, Law, EY., Kwan, M.Y,, Lai, P.K., 2007. The rules of time on ntfs file system.
In: Systematic Approaches to Digital Forensic Engineering, pp. 71—85. SADFE
2007. Second International Workshop on, IEEE.

Garfinkel, S.L., 2007. Carving contiguous and fragmented files with fast object
validation. Digit. Invest. 4 (Suppl. ment), 2—12.

Garfinkel, S., Farrell, P., Roussev, V., Dinolt, G., 2009. Bringing science to digital fo-
rensics with standardized forensic corpora, Digital Investigation 6. In: The
Proceedings of the Ninth Annual DFRWS Conference, pp. S2—S11.

Gladyshev, P, Patel, A., 2004. Finite state machine approach to digital event
reconstruction. Digit. Invest. 1, 130—149.

Hargreaves, C., Patterson, J., 2012. An automated timeline reconstruction approach
for digital forensic investigations, Digital Investigation 9. In: The Proceedings of
the Twelfth Annual DFRWS Conference, pp. S69—S79.

Inglot, B., Liu, L., 2014. Enhanced timeline analysis for digital forensic investigations.
Inf. Secur. J. A Glob. Perspect. 23, 32—44.

Inglot, B., Liu, L., Antonopoulos, N., 2012. A framework for enhanced timeline
analysis in digital forensics. In: IEEE International Conference on Green
Computing and Communications, pp. 253—256.

Jeyaraman, S., Atallah, MJ., 2006. An empirical study of automatic event recon-
struction systems. Digit. Invest. 3, 108—115.

Jones, J.H., Khan, T.M., 2017. A method and implementation for the empirical study
of deleted file persistence in digital devices and media. In: IEEE 7th Annual
Computing and Communication Workshop and Conference (CCWC), pp. 1-7.

Lamport, L., 1978. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21, 558—565.

R. Poisel, M. Rybnicek, S. Tjoa, Taxonomy of Data Fragment Classification Tech-
niques, Springer International Publishing, Cham, pp. 67—85.

Roussev, V., Garfinkel, S.L., 2009. File fragment classification-the case for specialized
approaches. In: Fourth International IEEE Workshop on Systematic Approaches
to Digital Forensic Engineering, pp. 3—14.

Schatz, B., Mohay, G., Clark, A., 2006. A correlation method for establishing prov-
enance of timestamps in digital evidence. Digit. Invest. 3, 98—107.

Silberschatz, A., Galvin, P,, Gagne, G., 2012. Operating System Concepts, ninth ed.
Wiley Global Education. CH-11, File System Implementation.

C. J. Veenman, Statistical disk cluster classification for file carving, in: Third Inter-
national Symposium on Information Assurance and Security, pp. 393—398.

http://refhub.elsevier.com/S1742-2876(19)30025-8/sref7
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref7
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref8
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref8
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref9
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref9
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref9
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref10
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref10
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref10
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref10
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref11
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref11
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref11
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref12
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref12
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref12
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref12
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref13
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref13
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref13
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref14
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref14
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref14
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref14
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref15
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref15
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref15
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref16
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref16
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref16
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref16
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref17
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref17
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref17
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref18
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref18
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref18
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref18
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref19
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref19
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref19
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref20
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref20
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref20
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref20
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref21
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref21
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref21
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref23
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref23
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref23
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref23
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref24
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref24
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref24
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref25
http://refhub.elsevier.com/S1742-2876(19)30025-8/sref25

	Deleted file fragment dating by analysis of allocated neighbors
	Introduction
	Related works
	Background
	File systems
	Digital fragments
	Slack space

	Dating model
	Experiment design
	Results and discussion
	Conclusion
	References

